11 research outputs found

    Simultaneous Wireless Information and Power Transfer in 5G communication

    Get PDF
    Green communication technology is expected to be widely adopted in future generation networks to improve energy efficiency and reliability of wireless communication network. Among the green communication technologies,simultaneous wireless information and power transfer (SWIPT) is adopted for its flexible energy harvesting technology through the radio frequency (RF) signa lthati sused for information transmission. Even though existing SWIPT techniques are flexible and adoptable for the wireless communication networks, the power and time resources of the signal need to be shared between infor- mation transmission and RF energy harvesting, and this compromises the quality of the signal. Therefore,SWIP Ttechniques need to be designed to allow an efficient resource allocation for communication and energy harvesting. The goal oft his thesisis to design SWIP Ttechniques that allow efficient,reliable and secure joint communications and power transference. A problem associated to SWIPT techniques combined with multi carrier signals is that the increased power requirements inherent to energy harvesting purposes can exacerbate nonlinear distortion effects at the transmitter. Therefore, we evaluate nonlinear distortion and present feasible solutions to mitigate the impact of nonlinear distortion effects on the performance.Another goal of the thesisis to take advantage of the energy harvesting signals in SWIP Ttechniques for channel estimation and security purposes.Theperformance of these SWIPT techniques is evaluated analytically, and those results are validated by simulations. It is shownthatthe proposed SWIPT schemes can have excellent performance, out performing conventional SWIPT schemes.Espera-se que aschamadas tecnologiasde green communications sejam amplamente ado- tadas em futuras redes de comunicação sem fios para melhorar a sua eficiência energética a fiabilidade.Entre estas,encontram-se as tecnologias SWIPT (Simultaneous Wireless Information and Power Transference), nas quais um sinal radio é usado para transferir simultaneamente potência e informações.Embora as técnicas SWIPT existentes sejam fle- xíveis e adequadas para as redes de comunicações sem fios, os recursos de energia e tempo do sinal precisam ser compartilhados entre a transmissão de informações e de energia, o que pode comprometer a qualidade do sinal. Deste modo,as técnicas SWIPT precisam ser projetadas para permitir uma alocação eficiente de recursos para comunicação e recolha de energia. O objetivo desta tese é desenvolver técnicas SWIPT que permitam transferência de energia e comunicações eficientes,fiáveis e seguras.Um problema associado às técnicas SWIPT combinadas com sinais multi-portadora são as dificuldades de amplificação ine- rentes à combinação de sinais de transmissão de energia com sinais de transferência de dados, que podem exacerbar os efeitos de distorção não-linear nos sinais transmitidos. Deste modo, um dos objectivos desta tese é avaliar o impacto da distorção não-linear em sinais SWIPT, e apresentar soluções viáveis para mitigar os efeitos da distorção não-linear no desempenho da transmissão de dados.Outro objetivo da tese é aproveitar as vantagens dos sinais de transferência de energia em técnicas SWIPT para efeitos de estimação de canal e segurança na comunicação.Os desempenhos dessas técnicas SWIPT são avaliados analiticamente,sendo os respectivos resultados validados por simulações.É mostrado que os esquemas SWIPT propostos podem ter excelente desempenho, superando esquemas SWIPT convencionais

    Energy Harvesting in Cooperative Communications

    Get PDF
    Ühiskommunikatsioon on võimalik meetod lahendamaks informatsiooni levimist juhtmeta võrgus mitmikteekonna korral. See võimaldab laiendada võrgu katvust ning pakkuda võimendust kasutades olemasolevat taristut. Praktikas tehakse seda kasutades sõlmpunkte vahereleedena. Nii mitmese ligipääsuga releede süsteem kui paralleelsete releede süsteem on võimalikud kandidaadid tulevastes juhtmeta ühisvõrkudes nende ülekandekiiruse efektiivsuse ning parema energiatarbe tõttu.\n\r\n\rVõimenda-ja-edasta (AF) ning dekodeeri-ja-edasta (DF) on peamised ühisreleede protokollid, mida kasutatakse üle releekanalite. Me uurime käesolevas magistritöös paralleelseid releesid AF ühiskommunikatsiooni võrkudes kasutades QPSK signaliseerimist üle Rayleigh’ kiirelt hajuva kanali koos valge aditiivse Gaussi müraga. Sihtkohas vastuvõetud signaali detekteerimiseks kasutades võrgus olevaid tegevuseta kasutatakse maksimaalse suhte ühendamise (MRC) meetodit. Mõõtes sihtkohast vastu võetud ühendsignaali sümbolite veasuhet (SER) arvutusliku simulatsiooni abil, uurime me suhet releede arvu ning kommunikatsiooni kvaliteedi vahel.\n\r\n\rSüsteemi energeetiline efektiivsus määrab selle operatsioonilise jätkusuutlikkuse. Energiakogumise (EH) meetod on hädavajalik tehnoloogia juhtmeta süsteemides, kus on piiratud ligipääs usaldusväärsele elektritoitele ja laadimisvõimalustele. Käesolevas magistritöös uurime me mitmese ligipääsuga releede süsteeme kasutades EHtehnoloogiat. Me eeldame, et lähte- ja releesõlmedel pole ühendatud energiaallikat, kuid on taaslaetav energiatalletus. Seega, iga sõlme käivitatakse ligipääsupunkti (AP) edastatud raadiosignaalidelt kogutud energiast ning iga sõlm toimib salvesta-siis- koostööta (STC) režiimis. Me simuleerime arvutuslikult ühendusetaseme jõudlust kasutades füüsilise ühenduse võrgukodeerimist EHja DF protokolli olemasolul. Käesolev magistritöö esitab erinevaid energiakogumise meetodeid (EH ja STC) ning nende katkemistõenäosusi. Esitatud skeemid saavutavad SER jõudluse, mis läheneb püsiva toiteallikaga jõudlusele ning laiendab oluliselt süsteemi energiapüsivust, samas säilitades pidevat läbilaskejõudlust.Cooperative communications is a promising technique used to combat the multipath propagation in wireless networks. It can also extend the network coverage and provide the diversity gain by using the existing infrastructure. In practice, this is often achieved by using idle nodes in the network as relays. The multiple access relay system and parallel relay system are appealing candidates for emerging wireless cooperative networks due to bandwidth efficiency and improved power consumption.\n\r\n\rThe amplify and forward (AF) and decode and forwards (DF) protocols are basic cooperative relay protocols used over the relay channels. In this thesis, we study parallel relays in AF cooperative communication networks using QPSK signalling over the Rayleigh fast fading with additive Gaussian noise channels. The maximum ratio combining (MRC) method is employed to detect the received signals at the destination. By simulating the symbol error rate (SER) of the combined received signal at the destination, we study a trade-off between the number of relays and the quality of the communications. \n\r\n\rThe energy efficiency of a system determines its operational sustainability. Energy harvesting (EH) is a crucial technology for a variety of wireless systems that have limited access to a reliable electricity supply or recharging sources. In this thesis, the design of a multiple access relay system (MARS) using EH is considered. We assume that the sources and the relay have no embedded power supply but rechargeable energy storage devices. Thus, each node is powered by harvesting the energy from the RF signals broadcasted by an access point (AP), and it operates in store-then-cooperate (STC) mode. We simulate the link level performance by using the physical layer network coding in the presence of EH with DF protocol. The thesis presents energy harvesting schemes (EH and STC) and outage probability analysis. The schemes presented in this thesis achieve SER performance approaching that of a fixed power supply and contribute significantly to sustaining the energy in the system while maintaining a constant throughput

    Secure information transmission with self jamming SWIPT

    Get PDF
    Grant No. 19-37-50083\19This article is focused on implementing simultaneous wireless information and power transmission as a physical layer security measure by using artificial noise. A series of high energy precoded symbols is simultaneously transmitted along with the information symbols over a Rayleigh frequency selective fading channel. The high energy precoded symbols act as an artificial noise for the eavesdroppers. The energy symbols are precoded on the basis of a legitimate user’s channel matrix to form a null space vector, which eliminates the interference of energy symbols at the information symbol receiver antennas, while allowing the rectenna to harvest energy from the superimposed information and energy symbols. We analyze the secrecy rate and error rate performance at the receiver under different circumstances, and we show that the performance of the legitimate user can be improved by using the iterative block decision feedback equalization method at the receiver.publishersversionpublishe

    Energy Efficient Secure Communication Model against Cooperative Eavesdropper

    No full text
    In a wiretap channel system model, the jammer node adopts the energy-harvesting signal as artificial noise (jamming signal) against the cooperative eavesdroppers. There are two eavesdroppers in the wiretap channel: eavesdropper E1 is located near the transmitter and eavesdropper E2 is located near the jammer. The eavesdroppers are equipped with multiple antennas and employ the iterative block decision feedback equalization decoder to estimate the received signal, i.e., information signal at E1 and jamming signal at E2. It is assumed that E1 has the channel state information (CSI) of the channel between transmitter and E1, and similarly, E2 has the CSI of channel between jammer and E2. The eavesdroppers establish communication link between them and cooperate with each other to reduce the information signal interference at E2 and jamming signal interference at E1. The performance of decoders depends on the signal to interference plus noise ratio (SINR) of the received signal. The power of information signal is fixed and the power of the jamming signal is adjusted to improve the SINR of the received signal. This research work is solely focused on optimizing the jamming signal power to degrade the performance of cooperative eavesdroppers. The jamming signal power is optimized for the given operating SINR with the support of simulated results. The jamming signal power optimization leads to better energy conservation and degrades the performance of eavesdroppers

    Energy Efficient Secure Communication Model against Cooperative Eavesdropper

    No full text
    In a wiretap channel system model, the jammer node adopts the energy-harvesting signal as artificial noise (jamming signal) against the cooperative eavesdroppers. There are two eavesdroppers in the wiretap channel: eavesdropper E1 is located near the transmitter and eavesdropper E2 is located near the jammer. The eavesdroppers are equipped with multiple antennas and employ the iterative block decision feedback equalization decoder to estimate the received signal, i.e., information signal at E1 and jamming signal at E2. It is assumed that E1 has the channel state information (CSI) of the channel between transmitter and E1, and similarly, E2 has the CSI of channel between jammer and E2. The eavesdroppers establish communication link between them and cooperate with each other to reduce the information signal interference at E2 and jamming signal interference at E1. The performance of decoders depends on the signal to interference plus noise ratio (SINR) of the received signal. The power of information signal is fixed and the power of the jamming signal is adjusted to improve the SINR of the received signal. This research work is solely focused on optimizing the jamming signal power to degrade the performance of cooperative eavesdroppers. The jamming signal power is optimized for the given operating SINR with the support of simulated results. The jamming signal power optimization leads to better energy conservation and degrades the performance of eavesdroppers

    Receiver Design to Employ Simultaneous Wireless Information and Power Transmission with Joint CFO and Channel Estimation

    No full text
    This work was supported in part by the Framework of the Competitiveness Enhancement Program of the National Research Tomsk Polytechnic University, Russia, and in part by the Fundacao para a Ciencia e Tecnologia and the Instituto de Telecomunicacoes under Project UID/EEA/50008/2013.Radio-frequency energy harvesting (EH) is one of the enabling technologies for the next-generation wireless communication systems. EH techniques are specifically used to improve the energy efficiency of the system. Recently, the simultaneous wireless information and power transmission (SWIPT) protocol is adapted for EH. In this paper, we design a new receiver for joint carrier frequency offset (CFO) and channel estimation on single-carrier modulations with frequency-domain equalization along with SWIPT implementation for EH by using the pilot signal. The pilot signal is a highly energized signal, which is superimposed with the information signal. The superimposed signal is used not only to transmit power for EH purposes but also to estimate the CFO and channel conditions. The receiver is designed to accommodate the strong interference levels in the channel estimation and data detection. The proposed scheme offers a flexible design method and efficient resource utilization. We validate our analytical results using simulations.publishersversionpublishe

    Opportunistic-harvesting: RF wireless power transfer scheme for multiple access relays system

    No full text
    \u3cp\u3eWireless communications have become one of the main stake holders on which our contemporary world relies for carrying out many daily activities. In this era, the number of connected devices is increasing rapidly, contemplating not only smart phone, but also growing connectivity of machines, sensors, and so on. Therefore, it is important to investigate the alternative energy sources for powering these connected small devices. In this paper, we design an RF wireless power transfer scheme for multiple access relay system model with different signal transmission schemes. Here, it is assumed that the sources and relay are self-powered devices and fitted in with rechargeable batteries. Therefore, each node is powered by an RF wireless power transfer that relies on a dedicated energy beam sent from the destination (serves as a power beacon) and other RF transmission links and such approach is referred as opportunistic-harvesting (OH) scheme. An idea of message combining resorting to network coding (NC) and physical layer NC is presented. Performance is demonstrated in terms of error rate and outage probability analyses by using OH. The schemes presented in this paper contribute substantially to sustaining the energy in the proposed scheme.\u3c/p\u3

    Modulation-based simultaneous wireless information and power transfer

    No full text
    Due to the rapid growth of IoT and other connected devices, developing battery-less and/or self-sustainable devices to enable green communication is crucial. This letter presents a practical simultaneous wireless information and power transfer (SWIPT) scheme based on an M -ary quadrature-amplitude modulation (QAM) modulation based technique (MS). The proposed scheme employs hybrid constellation shaping system (HCS) to improve the spectral efficiency. We compare MS with the traditional power splitting scheme based SWIPT (PS) technique. We demonstrate that our proposed scheme outperforms PS in terms of the error rate performance. MS scheme is mainly focused on improving the reliability of low powered IoT sensors and it offers better achievable information rate at operating SNR region as compared to that of PS. Those improvements come at the expense of a slight reduction in the maximum achievable spectral efficiency

    Modulation-based simultaneous wireless information and power transfer

    No full text
    \u3cp\u3eDue to the rapid growth of IoT and other connected devices, developing battery-less and/or self-sustainable devices to enable green communication is crucial. This letter presents a practical simultaneous wireless information and power transfer (SWIPT) scheme based on an M -ary quadrature-amplitude modulation (QAM) modulation based technique (MS). The proposed scheme employs hybrid constellation shaping system (HCS) to improve the spectral efficiency. We compare MS with the traditional power splitting scheme based SWIPT (PS) technique. We demonstrate that our proposed scheme outperforms PS in terms of the error rate performance. MS scheme is mainly focused on improving the reliability of low powered IoT sensors and it offers better achievable information rate at operating SNR region as compared to that of PS. Those improvements come at the expense of a slight reduction in the maximum achievable spectral efficiency.\u3c/p\u3

    Novel SWIPT schemes for 5G wireless networks

    Get PDF
    This work was funded, in part, by the Russian Federation State Project "Science", Grant No. 8.13264.2018/8.9, by the framework of the Competitiveness Enhancement Program of the National Research Tomsk Polytechnic University, and by Fundacao para a Ciencia e Tecnologia and Instituto de Telecomunicacoes, under Project UID/EEA/50008/2013.In this paper, we present a few novel simultaneous wireless information and power transfer (SWIPT) schemes that can be effectively used in various 5G wireless network implementations. First, we study the possibility of integrating distributed energy beamforming with the data rate fairness beamforming in a cooperative communication system with multiple cooperative relays and multiple destination users communicating simultaneously. We show that the system exploits significant performance gain using such a joint energy and data rate fairness beamforming scheme. Further, we propose an enhanced version of the SWIPT scheme, the energy-efficient modulation-based non-orthogonal multiple access (M-NOMA) SWIPT scheme, and observe its system efficiency in terms of more harvested energy. Finally, we consider an energy-harvesting SWIPT scheme where the channel response is estimated using the energy-harvesting signal as pilots superimposed on the information signal. For such a scheme, we compute the optimum transmit power ratio between the pilot and information signals under varying SNR conditions and improve the accuracy of the decoding process at the reception.publishersversionpublishe
    corecore